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Abstract The validity of the basic assumptions behind the

method of essential work of fracture (EWF), as applied to

ultra-high molecular weight polyethylene (UHMWPE), is

evaluated using finite element modelling. To define a suit-

able model of constitutive behaviour, the mechanical

properties of UHMWPE have been measured in both uni-

axial tension and compression over a range of strain rates.

The observed strain rate dependence of stress, including the

observed differences in strain rate sensitivity between ten-

sion and compression, is interpreted in terms of a single

Eyring process. The constitutive theory is constructed

comprising an Eyring process and hyperelastic networks,

the latter having responses symmetric with respect to ten-

sion and compression. This theory is implemented within a

finite element scheme, and used to model fracture mea-

surements made on the same material using double-edge

notch tensile specimens. Calculations of the non-essential

work and of the extent of the plastic zones are thus made

possible. It is concluded that the specific non-essential work

is essentially constant, but that the shape factor b, assumed

constant in the conventional analysis, varies significantly

with ligament length. The implication of this finding on the

derived EWF value is evaluated and found to be slight.

Introduction

Ultra-high molecular weight polyethylene (UHMWPE) is

of key importance in structural applications in the medical

implant field, where it is subject to complex stress fields

and wear at bearing surfaces. We require a detailed

understanding of its mechanical behaviour if we are to

predict its behaviour in these circumstances, as is necessary

when, for instance, finite element modelling is to be used.

As with all polymers, UHMWPE becomes nonlinear at

moderate strains and exhibits creep, stress relaxation and

strain-rate dependent yielding. Because of its low yield

stress, fracture phenomena are accompanied by large

plastic zones, leading to complications in both fracture

testing and analysis. In this paper we address both these

issues. We have investigated the mechanical behaviour of

UHMWPE and introduced a constitutive model that

reflects the observed complex behaviour, while remaining

tractable for application in engineering analyses. We have

also measured fracture behaviour using experiments in the

post-yield regime. Finally, we have implemented our

constitutive model in a finite element program and used the

resulting analysis to simulate the fracture experiments.

Here we have addressed two basic issues: the constancy of

the non-essential work; and the constancy of the plastic

zone shape factor.

Our constitutive model is constructed by combining

Eyring processes and hyperelastic network models. The

Eyring process results in an appropriate form of the

dependence of stress on time and rate of strain, so that rate-

dependent yield and viscoelastic phenomena such as non-

linear creep and stress relaxation are encompassed by the

model. A programme of tensile and compressive uniaxial

experiments over a range of strain rates is used to establish

the Eyring parameters. The use of an Eyring process that
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includes both pressure and shear terms enables the mod-

elling of the somewhat different strain rate dependences of

stress that are observed between tensile and compressive

behaviour. To enable the model to cover moderately large

deformations, we have introduced hyperelastic networks.

The form of network is chosen so as to accommodate the

observed stress–strain behaviour that, over the strain range

covered, is approximately symmetric between tension and

compression. The primary aim of the model is to provide

an adequate representation of the material behaviour in the

fracture specimens.

In a series of papers, Bergström et al. [1–3] have

developed constitutive models for UHMWPE. They have

combined hyperelastic and rate dependent plastic elements

to produce models of both conventional and highly cross-

linked UHMWPE. Rather than using an Eyring model of

plasticity, in their ‘hybrid model’ they use a power law that

does not include a pressure term. Most significantly, they

explore higher strains than covered here, going outside the

range for which the tensile and compressive responses are

approximately equal. Our relatively simple model operates

sufficiently well within the strain range required for mod-

elling the fracture experiments.

Material and experimentation

In all tests UHMWPE grade GUR1050 was used, manu-

factured by Hoechst and supplied by Orthoplastics, Tod-

morden Road, Bacup, Lancs, UK in the form of

compression moulded blocks. The molar mass of this grade

of polymer has been estimated in the range 5.5–

6.0 9 106 g mol-1 using intrinsic viscosity measurements

[4]. The crystallinity of the sample was determined at a

value of 40.96% as quantified using modulated differential

scanning calorimetry performed on a TA Instruments

Q2000 DSC imposing a ±0.5 �C oscillation every 40 s

onto a mean temperature ramp of 5 �C/min. The area under

the non-reversing heat capacity curve was divided by the

heat of fusion for a 100% crystalline sample, taken as

293 J/g.

Uniaxial tests were carried out in both tensile and

compressive modes using an Instron testing machine model

5568 operating at room temperature. The tensile specimen

geometry shown in Fig. 1 is based on a type I ASTM D638

standard. For the tensile tests, strains were measured with

the aid of a video extensometer (MessPhysik ME46NG)

that sensed the separation of two parallel pen lines 50 mm

apart on the 105 mm parallel gauge length. Tests were

carried out at constant speeds, which resulted in approxi-

mately constant rates of engineering strain in the range

0.005–0.08 s-1. These and other quoted experimental rates

of strain refer to the initial strain rate, i.e. at the start of the

test. For the compressive tests, specimens were in the

form of circular cylinders of diameter and height 10 mm,

with faces machined to an average surface roughness of

5–6 lm. Specimens were compressed at constant speed

between steel platens, with strains derived with good

accuracy using the machine displacement, as verified by

checking with a dial gauge extensometer. Engineering

strain rates were in the range 0.001–0.017 s-1. Specimens

were strained to a final extension ratio of 0.67, corre-

sponding to a true strain of -0.4. Photographs of the

specimens taken immediately after testing showed no signs

of barrelling in this range of strain rates, indicating truly

uniaxial conditions and no significant friction effects.

Fracture measurements were carried out using the

essential work of fracture (EWF) method. The EWF

method was developed as an alternative to the J-Integral

method in order to evaluate the fracture toughness of

ductile materials. It is considered to be less time consuming

and simpler to use [5, 6] and has been implemented by

various researchers [7–10] since it was first proposed by

Broberg [11]. Mai et al. [12] have applied the method to

UHMWPE. Double edge notch tensile specimens were

used with geometries as illustrated in Fig. 2, with ligament

lengths varying from 2 to 11 mm. The specimen thickness

was either 1.5 or 3 mm, in either case ensuring plane stress

conditions. The edge notches were in the form of machined

slits, sharpened to a further depth of 0.5 mm using a razor

blade driven via an attachment by the Instron tester. The

fracture tests were accomplished using the Instron testing

Fig. 1 Tensile specimen geometry. Dimensions in mm. The 115 mm

distance is the grip separation
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machine operating at room temperature at a testing speed

10 mm/min. Video images of the specimens, including the

ligament lengths and both crack tips, were captured at a

rate of 10 frames/s using a Pixelink model PL-741 digital

video camera, enabling observation of the ligament and the

crack tips during testing.

Fundamentals of constitutive behaviour

Stress–strain curves for the rate 0.01 s-1 are shown in

Fig. 3, where compressive and tensile behaviours are

compared. Here, as elsewhere, true stresses are plotted as

calculated on the assumption of incompressibility. The

shapes of the curves are similar for all rates. The difference

between the tensile and compressive result remains small,

provided true (logarithmic) strain is plotted, as found pre-

viously in this strain range [2].

Strain rate dependence of stress is plotted in Fig. 4. We

observe that the stress is an essentially linear function of

the logarithm of the initial strain rate. This applies in both

tension and compression. It is well known [13–15] the

strength of the strain rate dependence of stress—the strain

rate sensitivity—is a crucial influence in the growth of

instabilities in the form of strain localisation such as

necking, and so is crucially important for accurate strain

predictions.

The observed rate dependence can be modelled well

using an Eyring process, as is well-established [16]. For

such a process, the scalar plastic strain rate _ep is given by

_ep ¼ A expðVp�rÞ sinhðVssÞ; ð1Þ

where _ep is the octahedral strain rate, defined in terms of

the plastic strain rate tensor Dp by:

_ep ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

3
Dp : Dp

r

: ð2Þ

The parameters A, Vp and Vs are temperature-dependent

material constants, the latter two being proportional to

pressure and shear activation volumes, respectively. �r is

the mean stress and s is the octahedral shear stress. For a

Cauchy stress tensor R, the mean stress is given by

�r ¼ 1

3
trðRÞ; ð3Þ

the stress deviator tensor s by

s ¼ R� �rI; ð4Þ

and the octahedral shear stress by

s ¼
ffiffiffiffiffiffiffiffiffiffiffi

1

3
s : s

r

: ð5Þ

To complete the formulation, the components of the plastic

strain rate tensor are related to the stress deviator by the

Lèvy–Mises flow rule:

DP

_ep
¼ s

s
: ð6Þ

This supplies components of the symmetric strain rate

tensor. The method used to increment the plastic strain

Fig. 2 Fracture specimen geometry. Dimensions in mm

Fig. 3 Tensile and compressive stress–strain curves at strain rate

0.01 s-1

Fig. 4 Strain rate dependence of stress
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using these components is given below in the section ‘FE

modelling and analysis’.

In Eq. 1, it is often useful to assume that the hyperbolic

sine function has arguments large enough for it to

approximated by an exponential. Then, for a uniaxial stress

r, (1) becomes

_ep ¼
1

2
A exp

1

3
Vprþ

ffiffiffi

2
p

3
Vs rj j

� �

: ð7Þ

This is equivalent to

1

3
Vprþ

ffiffiffi

2
p

3
Vs rj j ¼ ln

2 _ep

A

� �

: ð8Þ

When uniaxial stress is plotted against the logarithm of

strain rate, the result is thus predicted to be linear, with

gradient

�1
3
Vp þ

ffiffi

2
p

3
Vs

� ��1

r\ 0

1
3
Vp þ

ffiffi

2
p

3
Vs

� ��1

r[ 0

8

>

<

>

:

ð9Þ

The expected difference in gradient in tension and com-

pression has been noted by Chow [17]. We may envisage

that a component of a material constitutive model consists

of an Eyring process in series with an elastic element.

Then, at yield, the applied strain rate is equal to the plastic

strain rate. Working on the basis of such a model, if both

compressive and tensile data are available as a function of

strain rate, it should be possible to identify both Vp and Vs

by the use of the above equations.

The stress–strain curves of Fig. 3 show behaviour that

can be interpreted as a combination of yielding and con-

tinued elastic deformation. We propose a model that can be

represented schematically by the diagram in Fig. 5. There

are many precedents for this configuration, perhaps the

earliest being due to Haward and Thackray [18]. One arm

of the model is as described above, comprising an Eyring

process in series with an elastic element. Consider that this

model is subject to a constant rate of strain. Then, once the

Eyring process is completely activated, the stress in this

arm becomes constant, as does the strain in the elastic

element. The stress in the other purely elastic arm then

continues to increase, so that the sum of the stresses in the

two arms evolves in a manner similar to that of the stress

observed in Fig. 3. From that figure, it appears that the

yielding of the Eyring process is complete at a strain of

0.15–0.2, when the slope ceases to decrease. According to

the proposed model, after yielding the total stress is equal

to the yield stress plus a quantity that depends only upon

strain. Then, plotting stress as a function of logarithmic rate

at a series of constant strains, as has been done in Fig. 4,

should give a series of straight lines with gradients dif-

fering only to the small extent that results from different

levels of hydrostatic pressure. This is pursued in the next

section.

To accommodate the large deformations, the elastic

elements are assumed to be hyperelastic. At the relatively

modest extension ratios that we are to model, finite strain

extensibility is not an issue, and so the Gaussian hyper-

elastic theory presents itself as a possible model. The

drawback of this model is that it does not produce a stress

response that is symmetric when comparing compressive

and tensile strains, as observed to a good approximation in

Fig. 3. At the strain rates here (equivalent to lnð _eÞ ¼ �5 in

Fig. 4), the difference between the stresses in compression

and tension from the Eyring mechanism is small, but

consistent with that observed in the experiments. The best

strategy is to use a network that is symmetric with respect

to tension and compression, and to model any observed

small asymmetry via the Eyring mechanism. Therefore, we

introduce the hyperelastic model defined by strain energy

function

W ¼ 1

2
C k2

I þ k2
II þ k2

III þ k�2
I þ k�2

II þ k�2
III � 6

� 	

: ð10Þ

Here I, II and III are the principal directions of strain and C

is a material constant. For any principal direction i, W is

symmetric with respect to interchange of ki, and 1/ki, or

equivalently of the true strains ln ki and –ln ki. This strain

energy function is a form of Mooney–Rivlin model. We

assume the material to be incompressible, with

kIkIIkIII ¼ 1: ð11Þ

Principal stresses are then given by

ri ¼ ki
oW

oki
� p ði = I, II, III); ð12Þ

where p is an unknown hydrostatic pressure. Under the

plane stress conditions of interest here with rIII = 0, p can

be eliminated to give

ri ¼ ki
oW

oki
� kIII

oW

okIII

ði ¼ I; IIÞ: ð13Þ

There are two such networks included in this constitutive

model, one in the X arm and one in the Y armFig. 5 Schematic of proposed model
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parameterised, respectively, by CX and CY. In the X arm,

principal stresses are given by

ri ¼CX keX
i

� 	2� keX
i

� 	�2þ keX
I keX

II

� 	2� keX
I keX

II

� 	�2
� �

ði = I, II), ð14Þ

where the keX
i are the principal extension ratios applied to

the network. Note that the total principal extension ratios ki

are related to the elastic and plastic principal extension

ratios multiplicatively by

ki ¼ keX
i kp

i ði = I, II), ð15Þ

where the kp
i are principal values of the plastic strain tensor

Vp.

For the Y arm, principal stresses are given by

. . .ri ¼CY k2
i � k�2

i þ ðkIkIIÞ2 � ðkIkIIÞ�2
� �

ði = I, II). . . ð16Þ

Material constitutive parameters

When using the above Eyring analysis and examining the

stress as a function of strain rate to apply Eq. 8 and

expressions (9), it becomes apparent that there is some

systematic increase of the gradient with strain, as shown in

Fig. 4. This suggests that the model is an over-simplifica-

tion, and that to include several Eyring processes rather the

single one used here would be more realistic. Then,

yielding could take place over a range of strains, with

processes with lower activation volumes coming into

operation at higher strains. However, we shall establish that

this model gives a highly useful representation of the

material while providing a manageable implementation,

and we shall use values of gradient averaged over the

measured strain range. Thus, the gradient in tension over

all strains is found to be 1.37 ± 0.23 MPa, and for com-

pression the corresponding result is 1.66 ± 0.37 MPa.

Here the errors span 95% confidence intervals, and the two

gradients are significantly different from each other at the

15% level. We proceed to use the analysis embodied in (8)

and (9) to derive values of both Vp and Vs. On this basis,

the measured gradients give Vp = 0.2 ± 0.04 and Vs =

1.5 ± 0.33 MPa-1. These parameters are related to the

pressure and shear activation volumes vp and vs, respec-

tively, by

Vp ¼
vp

kT
; Vs ¼

vs

kT
; ð17Þ

where k is Boltzmann’s constant and T the absolute tem-

perature. Our parameter values derived above correspond

to vp = 1.3 nm3 and vs = 7.3 nm3, with ratio vp/vs = Vp/

Vs = 0.13.

There are few published values of the ratio vp/vs in the

literature. In the case of amorphous polymers, Nazarenko

et al. [19] have proposed the value of 0.06 for polycar-

bonate, while Bauwens-Crowet and Bauwens [20] have

proposed for the same material the value 0.075, while

noting values in the range 0.05–0.072 obtained by other

workers. In the case of semicrystalline polymers, Joseph

and Duckett [21], using a high pressure measurement

technique, derived for polypropylene a room pressure value

for the ratio of 0.15. Using similar techniques with poly-

ethylene, and working over a wider range of strain rate than

in this study, Truss et al. [22] detected two Eyring pro-

cesses, with ratios of 0.035 and 0.063.

There are some absolute values of activation volume

available for comparison in the literature. The values of

Truss et al. [22] were obtained with polyethylene using

torsion experiments. When corrected for the use of shear

stress rather than octahedral shear stress in their Eyring

equation, the shear activation volumes that they derive for

their two-process model correspond to 4.5 and 8.0 nm3, the

latter very close to that derived here. Often, experiments in

uniaxial tension are used to derive a combined activation

volume from the observed strain rate dependence of yield;

by inspection of Eq. 7, such a combined activation volume

parameter v is given by

v ¼ 1

3
vp þ

ffiffiffi

2
p

3
vs: ð18Þ

On this basis, our activation volumes correspond to

v = 3.9 nm3. This compares with the value obtained in

tension for polyethylene of Brooks et al. [23] equivalent

(taking into account a factor of 2 in the argument of their

sinh term) to v = 2.42 nm3.

The above discussion shows that our values of activation

volume are comparable to those derived by other workers.

It is to be expected that different polyethylenes will show

somewhat different activation volumes on the basis of

having different detailed structure. In particular, in the

work of Gueguen et al. [24] it is assumed that yielding is a

co-operative process involving activation volumes for both

the crystalline and amorphous phases. The effective acti-

vation volume is then a function of both the crystal and

amorphous activation volumes and of the degree of crys-

tallinity. Some of the observed differences in Eyring

parameters are then attributable to different levels of

crystallinity.

The values of the model parameters use to fit the

material behaviour are summarised in Table 1. Resulting

predictions of stress–strain curves are compared with

observation in Fig. 6 for both tension and compression at

strain rates selected to include the extremes covered in

tension and compression. Yielding is predicted to take

place more abruptly than is observed, as a consequence of

452 J Mater Sci (2010) 45:448–459
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the single Eyring process used in the model. A more

complex model including a spectrum of processes could

represent the yield process more precisely, but at the

expense of greater computational complexity.

Fracture analysis and results

Using the EWF method, in which for each tensile test

fracture is induced along the whole of the ligament length

L, it is assumed that the total work W on the specimen is

divided into the essential work We required to create the

crack surface and the non-essential work Wne, associated

with plastic deformation:

W ¼ We þWne: ð19Þ

For a specimen of thickness t, the total crack area is Lt, and

we may introduce specific essential work of fracture ue:

ue ¼ We=Lt: ð20Þ

We also introduce the non-essential specific work une.

However, as this component is associated with the volume

of yielded material, it is related to the Wne via the plastic

zone volume. This quantity is not readily calculable, but is

assumed to be a volume adjacent to the crack surface with

average extent bL from the crack. The plastic zone volume

is then bL2t and we may write

Wne ¼ unebL2t; ð21Þ

where b is known as the shape factor. Dividing Eq. 19 by

Lt and using Eqs. 20 and 21 gives

u ¼ ue þ unebL; ð22Þ

where u = W/Lt. The quantity u can be measured for a

range of ligament lengths. The conventional analysis is to

assume that b is constant and to extrapolate the resulting

linear equation (22) to find ue = u at L = 0. The constancy

of b is a questionable assumption and the general validity

of Eq. 22 has been questioned, and successfully replaced

by a nonlinear expression [25]. This issue will be examined

in a later section using finite element modelling. However,

in this section we will produce results using the conven-

tional interpretation.

To use the EWF method described above, double-edge

notch tensile specimens (Fig. 2) were tested to give results

typified in Figs. 7 and 8 as plots of applied remote stress

versus specimen extension, for the 1.5 and 3.0 mm thick

specimens, respectively. The energies to fracture for both

specimen thicknesses are plotted in Fig. 9 to give a single

extrapolated value for the EWF ue at zero ligament length

of 66 ± 15 kJ/m2, according to Eq. 22 under the assump-

tion of a constant b. This compares reasonably well with

fracture results for UHMWPE of other workers. Ching

et al. [5] evaluated a ue value of 56 kJ/m2 for UHMWPE,

but using a grade different from that measured here. Mai

et al. [12] studied two grades of UHMWPE, using both the

EWF method and the J-integral approach. The latter

method yields a fracture energy value Jc which is equiva-

lent to ue. The values for ue were calculated in the range of

77–98 kJ/m2, while the Jc values were in the range

85–104 kJ/m2. A further value of Jc for UHMWPE of

Table 1 Parameters used for the constitutive model

CX, MPa CY, MPa A, s-1 Vp, MPa-1 Vs, MPa-1

136 4.0 7.3 9 10-9 0.19 1.41

Fig. 6 Comparison of model

and observed stress–strain

curves in tension at strain rate

a 0.005 s-1 and b 0.1 s-1.

Comparison of model and

observed stress–strain curves in

compression at strain rate

c 0.0005 s-1 and d 0.017 s-1
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99.5 kJ/m2 has been reported by Rimnac et al. [26]. In

summarising the values obtained for Jc for UHMWPE, the

review by Pruitt [27] notes that reported values are in the

range 66.5–99 kJ/m2. A specific comparison for the grade

of material studied here using the EFW method is provided

by Haughie et al. [28], who report a value of ue of

69 ± 9 kJ/m2. This is entirely consistent with our estimate.

FE modelling and analysis

The validity of some of the assumptions behind the EWF

method will now be explored by modelling. The constitu-

tive equation described above has been implemented

within a finite element scheme to model the EWF experi-

ments. The finite element program ABAQUS was used,

with the material model implementation via a ‘UMAT’

user-defined subroutine. The analysis carried out in the

subroutine is summarised here. The formulation is similar

to that used previously for high temperature stretching of

polypropylene [29, 30] in which different elastic network

components were used.

At each computed point the deformation is input to the

subroutine in the form of the deformation gradient F. This

strain applies to both arms of the model of Fig. 5.

One arm consists of a network as defined in Eq. 14 in

series with an Eyring process (the X arm), and the other

entirely of a network of the same kind (the Y arm) defined

by Eq. 16. The X and Y arms are associated with stress

tensors RX and RY, respectively, defined in global axes.

Equations 3 and 4 are now expressed as:

s ¼ RX � �rI ð23Þ

and

�r ¼ 1

3
trðRXÞ: ð24Þ

The scalar octahedral shear stress s used in (1) remains as

defined in Eq. 5.

There has been a number of approaches to the analysis

of elastic–plastic behaviour at large deformation, a useful

summary of which has recently been made available by

Figiel and Buckley [31]. Following the method that they

classify as approach II, we split the deformation gradient F

multiplicatively into elastic and plastic components in the

X arm Fe and Fp:

F ¼ FeFp: ð25Þ

At this point, the analysis may proceed in a number of

ways, depending on how rigid body rotation is distributed

between Fe and Fp. We have assumed that all the rigid

body rotation is included in the plastic deformation. This

follows the ‘approach II, case 2’ method as classified by

Figiel and Buckley [31]. Fp is thus split into pure

deformation Vp and rigid body rotation R (via the use of

the Cauchy–Green strain measure) to give

Fp ¼ VpR: ð26Þ

while the elastic deformation gradient is symmetric, with

Fe¼ VeX, so that Eq. 25 becomes

F ¼ VeXVpR: ð27Þ

Fig. 7 EWF testing for specimens of thickness 1.5 mm

Fig. 8 EWF testing for specimens of thickness 3.0 mm

Fig. 9 Specific work plot to give extrapolated value ue = 66.2 kJ/m2

454 J Mater Sci (2010) 45:448–459
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An incremental approach is used, with strain rate assumed

to be constant during each time increment. The current

plastic stretch Vp is related to the plastic strain Vp
0 at the end

of the previous time increment and the increment of plastic

strain DVp developed during the current increment, by

F ¼ VeXDVpVp
0R: ð28Þ

VeX and DVp are collinear, since the direction of DVp is

prescribed by the flow rule (6). The magnitudes of the

components of DVp are such that the components of DVpVp
0

are incremented according to the Eyring equation (1) and

the flow rule (6). The values of VeX and DVp in equation

(28) are derived via an iterative process, to impose the

condition that the stresses in the network and the Eyring

process are equal while the strains in the two elements are

related to the total strain by Eq. 28. At each iteration,

stresses are generated using Eq. 14 to drive the Eyring

process via Eqs. 23, 24 and 1. The values of the plastic and

elastic strain components are adjusted until the stresses in

the two processes are sufficiently close. The resulting true

stress is then transformed to global directions to give the

stress tensor RX. Finally, the plastic strain tensor Vp at the

end of the time increment is the symmetric part of Fp, with

Fp ¼ DVpVp
0R ¼ VpR0; ð29Þ

where in general the rigid body rotation R0 differs from R.

The principal stresses in the Y arm are defined in Eq. 16.

When transformed to global directions they yield the stress

tensor RY. The total stress R is then given by

R ¼ RX þ RY: ð30Þ

As noted by Figiel and Buckley [31], the different possible

approaches to the elastic–plastic analysis for arm X will

give different numerical results. In their examples, they

showed that the stress predictions of the different methods

are similar at lower strains, beginning to part company at

shear strains of *1 and normal true strains of *1. The

maximum strains covered in this study are well below 1, so

we conclude that our choice of method should yield an

adequate analysis.

Fracture analysis

The above formulation has been implemented in finite

element analyses using models of the EWF specimens, one

of which is shown in Fig. 10. This is a quarter model of the

specimen. A number of models of this type with varying

ligament lengths have been run, using material parameters

given in Table 1. No attempt was made to model crack

propagation. The model specimens were extended by

constant speed vertical motion of the upper horizontal

boundary while restraining horizontal movement of each

node, to mimic the experimental technique. The lower

symmetry boundary was constrained in the vertical direc-

tion only to allow lateral contraction. A range of notch

lengths was used.

The use of this analysis allows us to explore the levels of

irrecoverable energy expended in extending the model

specimen under conditions of no crack propagation—the

non-essential work. The energy is calculated from the work

done on extending the upper boundary to give the total

strain energy W within the quarter model specimen. We

assume that cracks grow at a constant crack opening dis-

placement (COD), as supported by our video capture the

experiments. We shall present results calculated for a series

of ligament lengths for specimens stretched to give the

same value of COD, by a vertical displacement uCOD which

depends on the ligament length. Thus,

w ¼
Z

uCOD

0

F du ð31Þ

gives the total energy w when the finite element model is

used with the material model defined above and specified

Fig. 10 Mesh for quarter model fracture specimen, for ligament

length 9 mm
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by the parameters of Table 1. Lower-case letters are used

here for energies associated with the non-growing cracks of

the FE models. To calculate the plastic energy

corresponding to the non-essential work, we subtract

from w the elastic strain energy in the model specimen

welas. The latter is calculated using the same meshes and

material model as for calculating w, but with the Eyring

process inactive; the material parameters are as in Table 1

except that the activation volume parameters Vs and Vp are

so small that the strain in the Eyring process is negligible.

The elastic models are extended such that the maximum

boundary force Fmax is the same as that attained in the

calculation of w in Eq. 31, to an extension that we denote

by ufmax. While we require the elastic energy to be

calculated over the whole of the specimen outside the

yielded zone, this procedure also includes the elastic

energy in the volume of material that becomes the plastic

zone. However, since the volume of the plastic zone is

typically\2% of the volume of the specimen, we consider

this to cause an insignificant error. Thus, to a good

approximation,

welas ¼
Z

ufmax

0

Felas dv; ð32Þ

where Fmax is the boundary force calculated using the

elastic model. The non-essential work is now given by

wne ¼ w� welas: ð33Þ

We have chosen a numerical value of COD of 1.7 mm and

related this to the vertical displacement of the node adja-

cent to that at the notch tip, so that VCOD corresponds to the

displacement of the node of 0.85 mm. This value of COD

is realistic according to the video observations of the

fracture experiments, though we would expect similar

conclusions from the foregoing analysis for arbitrary COD

values. Numerical evaluation of the integrals in Eqs. 31

and 32 have been used to derive values of Wne for a range

of ligament lengths.

In Fig. 11, we plot the results of simulations carried out

at a rate of deformation corresponding to the experimental

speed of 10 mm/min. It is clear that wne is a linear function

of ligament length to a very good approximation. There are

grounds for expecting a zero intercept in Fig. 11, whereas

the intercept is clearly positive. In the arguments for the

EWF method outlined above, it is assumed that the non-

essential work is proportional to the volume of the plastic

zone. This would lead to a zero intercept to correspond to

the implied zero volume of yielded material. The

assumption is justified for simple elastic–plastic behaviour,

but in the constitutive model used here the material is time-

dependent; the energy within yielded material dissipates

with time. For higher ligament lengths, the fixed COD is

reached after longer times, with a corresponding increased

tendency for wne to decay. This will lead to a tendency to a

positive intercept. To explore the importance of this effect,

we have conducted a set of simulations that correspond to a

higher testing speed of 20 mm/min, for which we would

expect the tendency for a positive intercept to be less. The

results, also plotted in Fig. 11, show a smaller positive

intercept.

If we accept that under certain ideal conditions, the

intercepts in plots like those in Fig. 11 would be zero, or

that in any case we may use the zero intercept as a rea-

sonable approximation, we have

wne ¼ a‘t ð34Þ

for a gradient a and ligament half-length ‘. Suppose that at

any crack length there is a plastic zone extending to a

distance r normal to the crack. Then, the plastic zone has a

volume v

v ¼ cr2t; ð35Þ

where c is a shape factor in the same spirit as b in Eq. 21,

but applying as a local value for the growing crack rather

than for the complete grown crack. Suppose further, in

common with the conventional analysis, that the volume of

the plastic zone is proportional to the non-essential work.

Then,

wne ¼ gr2t; ð36Þ

where g is simply related to c. Equating (21) and (21) now

gives

r ¼

ffiffiffiffiffi

a‘
g

s

: ð37Þ

Suppose that a crack extends from an initial ligament

length L to complete fracture. Then, the total volume of the

plastic zone after passage of the crack V is given by

Fig. 11 Non-essential work as calculated from FE models, for testing

speeds 10 mm/min (�) and 20 mm/min (h). The intercept for the

higher speed is 9% lower than for the lower speed
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V ¼ 2t

Z

L=2

0

r d‘; ð38Þ

which by the use of Eq. 37 becomes

V ¼ 2t

Z

L=2

0

ffiffiffiffiffi

a‘
g

s

d‘: ð39Þ

This can be integrated to give a simple expression

provided that g is independent of ‘. However, in general

this assumption will not be correct. It can be envisaged

that, as the crack depth increases, the yielded region ahead

of it will begin to confront the symmetry boundary, so that

its forward extent will become a lower proportion of its

normal extent r, so that g will decrease. However, a

constant g could be maintained for a good proportion of

the integral for the case of small plastic zones. To

examine this limiting case, we integrate Eq. 39 at constant

g to give

V ¼
ffiffiffi

2
p

t

3

ffiffiffi

a
g

r

L3=2: ð40Þ

We now equate this volume with that occurring in Eq. 21

ðV ¼ bL2tÞ to give for the shape factor b

b ¼ 1

3

ffiffiffiffiffi

a
2g

r

L�1=2: ð41Þ

The dependence of b on L apparent from Eq. 41 is in direct

contradiction to the constancy of b assumed in the

conventional analysis. The use of this expression for b in

the original equation (22) gives the result:

u ¼ ue þ uneAL1=2 ð42Þ

This resembles the relation proposed by Levita et al. [25]:

u ¼ Bþ CLn: ð43Þ

They found that optimised fits to their data invariably

produced very low, effectively zero, values of B, with

exponent n in the range 0.56–0.72. The power law (43)

with B = 0 represented their data for polymer films very

well, but was clearly not useful for deriving ue. Similarly,

we have found that optimised fits of Eq. 42 to our data give

ue = 0. In the theory above Eq. 42 is associated with a

function b of Eq. 41 that is singular at L = 0, and a similar

observation can apply to Eq. 43 if it is interpreted in terms

of a similar theory for 0 \ n \ 1; the poor extrapolating

behaviour towards L = 0 can be interpreted in terms of a

singularity in b.

We now explore the validity of one of the major

assumptions behind the EWF method by examining the

finite element results. This assumption is that the energy

density une is constant. There are no a priori physical

grounds for this assumption. Even for simple elastic–

plastic behaviour with a constant yield stress, once an

element of material has been taken to its yield stress, it can

be extended further to an arbitrary extent at constant stress

while an arbitrary amount of work is done on it. Under the

conditions of fracture of the EWF method, it may be

expected that the extension applied to the plastic zone is

limited as it will cease once the crack has passed, so there

will be some natural limit to une. To quantify this, we

compare the non-essential work deduced so far from the

boundary extensions with the volumes of yielded material

predicted by the models. We derive contour plots that

approximate to the plastic zones by assuming a von Mises

yield stress of 25 MPa, consistent with our stress–strain

observations at higher strain rates. In Fig. 12, we show

contour plots of von Mises stress for various ligament

lengths L at a constant COD of 1.7 mm. These are plotted

on the undeformed model so that the thickness remains

constant and the areas can be simply related to volumes,

bearing in mind that the theory is for incompressible

material. These plastic zones relate to non-propagating

notches; the plastic zones of concern in the EWF method

are those associated with a crack that has completely

propagated through the specimen. In the case where the

ligament has fully yielded before crack propagation, there

Fig. 12 Contour plots of von Mises stress for different ligament

lengths showing the extent of the plastic zones. The plots are for the

full width of the models (e.g. Fig. 11) for the region above the lower

symmetry boundary
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is little difference in the extent of these zones. For values of

ligament of 9 mm or less, the model zone is larger than for

smaller ligaments, and so a good estimate is simply that the

model zone is equal in size to that for the fully propagated

crack. For ligament lengths of 10 and 11 mm, this is not the

case and we estimate the final zone area by assuming that

the model zone propagates at constant height. In this way,

we can use the finite element results to derive the volumes

of both types of plastic zone. These are plotted in Fig. 13.

For the zones associated with the propagated cracks, there

is a linear relationship with ligament length. When asso-

ciated with the non-essential work plotted in Fig. 11 and

the associated equation (34), the clear implication is that

une is constant to a good approximation. Comparing the

slopes of the two figures gives a value une = 12.5 J mm-3.

For the zones associated with non-propagated cracks une is

increased at the higher ligament lengths.

From Fig. 12 it is clear that, as L increases, the zone

elongates so that b is clearly dependent on L. We have

calculated b using the area measurements discussed above,

and the result as plotted in Fig. 14 shows that it varies

considerably with ligament length. To examine the impli-

cations of this variation for the extrapolated ue value, we

have plotted u against bL in Fig. 15; according to equation,

this should give a linear relationship. In this plot, we have

used the calculated values of b of Fig. 14, smoothed using

a power law function to avoid introducing noise into the

plot. The extrapolated value for ue is little changed from

the original plot of Fig. 9; the value is now 65.4 ± 38

rather than 66 ± 15 kJ m-2. However, the error in the

intercept has been greatly increased, reflecting the smaller

range in the x-values. In this case, there is seemingly no

advantage in the use of the calculated b values.

Conclusions

For the purpose of examining the validity of the EWF

method of fracture testing when applied to UHMWPE, we

have developed a constitutive model that provides a good

overall description of the behaviour of UHMWPE in both

uniaxial tension and compression. In particular, the strain

rate dependence of stress, including the small difference

between tension and compression, is modelled via an

Eyring process. This model has been incorporated via a

user-defined subroutine into the commercial finite element

package ABAQUS.

We have carried out a programme of double-edge notch

tensile testing of UHMWPE specimens. The results have

been analysed using the method conventionally employed

with EWF, and fracture energy values derived similar to

those obtained by other workers. The EWF specimens have

been modelled using the finite element implementation of

the constitutive model. This has allowed some basic

assumptions of the conventional EWF analysis to be

addressed, namely the constancy of the non-essential work

and the constancy of the plastic zone shape factor. By using

an energetic analysis of the finite element model results,

Fig. 13 Areas (=volume/unit thickness) of plastic zones from FE

analyses. Results for non-propagating cracks are plotted only when

different from those for propagated cracks

Fig. 14 b calculated from FE analyses

Fig. 15 Specific work plot as a function of b 9 ligament length to

give extrapolated value ue = 65.4 kJ/m2

458 J Mater Sci (2010) 45:448–459

123



and also evaluating plastic zone sizes, it is concluded that

the specific non-essential work une is constant to a good

approximation. The shape factor b, assumed constant in the

conventional EWF analysis, is shown to vary strongly with

ligament length. The implications of this on the calculated

values of the EWF are examined, and for the experiments

discussed here they are found not to be significant. The

calculated value of ue is found to be 66 ± 15 kJ m-2.
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